Espacio vectorial con producto interno y sus propiedades.
Un espacio vectorial complejo V se denomina espacio con producto interno si para cada par ordenado de vectores u y v en V, existe un numero complejo único (u,v), denominado producto interno de u y v, tal que si u, v y w están en V y αϵC, entonces
La barra es las condiciones v) y vii) denota el conjugado complejo.
Nota. Si (u,v) es real, entonces (u,v)=(u,v) y se puede eliminar la barra en v).
EJEMPLO: producto interno de dos vectores en C3
En C3 sean x=(1+i, -3, 4-3i) y y=(2-i, -i, 2+i). entonces
Sea V un espacio con producto interno y suponga que u y v están en V. entonces
Nota 1. Aquí se usa la doble barra en lugar de una sola para evitar confusión con el valor absoluto. Por ejemplo ǁsen tǁ denota la norma de sen t como un “vector” en C[0, 2π] mientras que |sen t| denota el valor absoluto de la función sen t.
Nota 2. La ecuación anterior tiene sentido ya que (u, u)≥0.
EJEMPLO: dos vectores ortogonales en C2
Conjunto ortonormal
Si solo el primero se cumple, se dice que el conjunto es ortonormal.
TEOREMA: cualquier conjunto finito de vectores ortonormales diferentes de cero en un espacio con producto interno es linealmente independiente.
TEOREMA: cualquier conjunto finito linealmente independiente en un espacio con producto interno se puede convertir en un conjunto ortonormal mediante el proceso de Gram-Schmidt. En particular, cualquier espacio con producto interno tiene una base ortonormal.
Proyección ortogonal
Las demostraciones de los siguientes teoremas son idénticas a sus contrapartes en Rn.
Complemento ortogonal
TEOREMA: si H es un subespacio del espacio con producto interno V, entonces
TEOREMA DE PROYECCIÓN: sea H un subespacio de dimensión finita del espacio con producto interno V y suponga que vϵV. entonces existe un par único de vectores h y p tales que hϵH, pϵH, y (8) v=h+p donde h=proyHv.
Si V tiene dimensión finita, entonces p=proyHv.
TEOREMA: sea A una matriz de nxn; entonces A tiene vectores propios linealmente independientes si y solo si multiplicidad geométrica de cada valor propio es igual a su multiplicidades algebraica. En particular, A tiene n vectores propios linealmente independientes si todos los valores propios son distintos (ya que entonces la multiplicidad algebraica de cada valor propio es 1.
Comentarios
Publicar un comentario